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SUPPLEMENTARY NOTES 

Complete data sets and key analysis codes were provided as R Data Space through the 

GitHub link https://github.com/changwn/BC-CRC. Key data sets were listed below: 

1） Original Gene Expression data: 

GEO-RData 

2） CMS classes of each sample: 

CMS_sample_list_all.RData 

3） Complete sets of identified BCs with significance:  

TCGA_sig_BC_list_all_new_pp.RData, sig_BC_list_all_new_pp.RData 

4） Pathway enrichment of the BCs: 

PE_all_list.RData, TCGA_PE_all_list.RData 

5） Association with CMS classes of the BCs: 

CMS_BC_enrich_list.RData 

6） Clinical association with each BC: 

BC.CMS.clinical.RData 

7） Clinical, DFS, and OS data: 

I.gse.clinical.RData, I.gse.dfs.RData, I.gse.os.RData 

8） TCGA mutation associated BCs: 

TCGA_mutation_BC_association.RData 

9） TCGA chemo-resistance associated BCs and relevant information: 

TCGA_chemo_resistance_data.RData 

 

Color code for Figure 3 

R color codes for each column (From left to right) in Figure 3: 

‘midnightblue’,'lightblue','lightgoldenrod1','palegreen','indianred1','mediumpurple1',"midnigh

tblue",'lightblue','lightgoldenrod1','palegreen','indianred1','mediumpurple1',"midnightblue",'li

ghtblue','lightgoldenrod1','palegreen','indianred1','mediumpurple1' 

Color code for p value: we log transformed the original p value into p∗ = −
log(p)

log(10)
,  and  p∗ 

is forced to be 5 for x ≥ 5. Otherwise for all the 2 < x ≤ 5, the color score is coded as 

x∗color+(5−x)∗white

5
.  

Radius code for enrichment: for a hitting frequency r, denote 𝒓∗ =
r

r̂
 where r̂ denotes the 

expected frequency under randomization, i.e the relative hitting frequency. 𝒓∗ is forced to be 

3 for 𝒓∗ ≥ 3. For all 1 < 𝒓∗ ≤ 3, the radius is 
𝒓∗−1

2
. 

 

SUPPLEMENTARY METHODS 

https://github.com/changwn/BC-CRC


The connection between bi-clustering formulation and gene expression control, and gene 

co-regulations 

A gene’s expression in a mammalian cell is regulated by the interactions between its DNA 

molecule and a collection of transcriptional regulatory inputs of different signals. For a gene 

with P possible transcriptional regulation inputs TRI𝑖,  𝑖 = 1, … , 𝑃, the probability of its 

promoter being bound by an RNA polymerase 𝑃𝑏, which is proportional to the transcriptional 

rate, can be modeled by a Michealis Menten model: 
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where 𝑅𝑖 ,  [TRI𝑖],  𝐾𝑖 denote production rate, concentration and kinetic parameters associated 

with the ith TRI; M{1 … 𝑃} is the power set of {1 … 𝑃}, 𝛺 denotes an element in 𝑀{1 … 𝑃}; 

𝑅𝛺,   𝐾𝛺 denote the production rate and kinetic parameters associated with the subset of TRIs 

in 𝛺. Specifically, we call each 𝛺 as a transcriptional regulatory state (TRS), which is 

determined by the combination of its TRIs, and reflected by the observed expression in a 

single cell. Noting that in a single cell the state of each TRI can be rationally simplified to 

either bound ON or OFF to the DNA molecule, thus the TRI𝑖 is a Boolean variable and the 

equation (*) is a step function with at most |𝑀{1 … 𝑃}| = 2𝑃 plateau levels: 

𝑃𝑏(Current TRS = {TRI𝑖,  𝑖 ∈ 𝛺}) = 𝑃𝑏({[TRI𝑖] ≫ 0, [TRI𝑗] = 0| 𝑖 ∈ ℳ,  𝑗 ∉ 𝛺}) = 𝑅𝛺 

With this formulation, for a mammalian cell, the distribution of the gene expression result 

from different transcriptional regulatory states (TRS) can be estimated as a mixture Gaussian 

distribution after introducing Gaussian errors of the gene expression level. However, the gene 

expression and its underling regulatory state is more complicated for the gene expression 

observe from a bulk tissue sample since the cell components always have different TRS due 

to the variation of cell types and states. Some genes may not show varied TRS due to the 

normalization of the largely heterogenous signals from different cells. However, some disease 

feature triggering genes are with varied TRS through different patients, such as the ER 

expression in ER+ breast cancer comparing to other breast cancer subtype. In most cases, it is 

unknown which genes are with such disease related TRS variation, and which samples 

conceive such variation is also unknown, hence form a bi-clustering problem. With the 

non-parametric discretization, such as splitting each gene’s expression into three states 

namely low, medium and high expressions in this study, the binary vector of the three 

arbitrarily assumed gene expression states can capture a certain part of true TRS, especially 

for the TRS of low and high expressions of the gene. In addition, a sample subgroup specific 

gene co-regulation module (CRM) can be defined by a group of genes sharing a common TRS 

throughout a subset of samples, which is exactly the bi-clustering formulation used in this study. 



Hence if there exists such a gene co-regulation module, the bi-clustering formulation of this 

study can cover at least a majority part of the gene co-regulation module. In addition, 

optimization of the discretization states K ensures the largest coverage of such co-regulation 

modules. However, it is noteworthy that not all the observed BCs may suggest a sample 

subgroup specific gene co-regulation modules. For example, a BC corresponds to high 

expression level of T cell genes is more likely to suggest the sample group is with higher T cell 

infiltrations. 

 

Bi-clustering Analysis parameters 

Our empirical test suggested using the following biclustering parameters used in this analysis: 

 

qubic -i input_data -f 0.25 -o 3000 -c 1 -d 

qubic -i input_data -f 0.25 -o 3000 -c 0.95 -d 

qubic -i input_data -f 0.25 -o 3000 -c 0.9 -d 

qubic -i input_data -f 0.25 -o 3000 -c 0.875 -d 

qubic -i input_data -f 0.25 -o 3000 -c 0.85 -d 

 

This parameter set can effectively covers the bi-clusters of different level of consistency. And 

it is noteworthy that, BCs with -c smaller than 0.8 were always identified as insignificant 

(with the current discretization and significance evaluation rule). See more details of the 

parameters in http://bioconductor.org/packages/release/bioc/html/QUBIC.html. 

 

Derivation of this p value assessment method: 

We extended Xing Sun et al’s work in estimating the probability of observing an all 1 sub 

matrix within a binary matrix, where there is a fixed number of 1s per row. Specifically, denote 

a binary matrix 𝑍𝑚0×𝑛0
 with 𝑚0 rows, 𝑛0 columns, and 𝑥0 elements in each row equal to 1, 

we define 𝑏 =  
𝑛0

𝑥0
 and 𝛼 =

𝑚0

𝑛0
. For a submatrix Z with 𝑚1 rows and 𝑛1 columns, define 

𝛽 =
𝑚1

𝑛1
.  By Xing Sun et al’s work, with fixed 𝛼, 𝑛0, 𝛽, 𝑎𝑛𝑑 𝑝 , an upper bound of the 

probability to observed an all 1s submatrix with at least 𝛽𝐾 rows and 𝐾 columns is 
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And for fixed 𝛼 > 0 and 𝛽 > 1. Almost surely |𝐾 −  s(𝛼, n0, 𝛽)| <
5

2
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However, the method only works for all 1s matrix. To extend the findings into situations where 

BCs with a certain number of 0s are allowable we did the following. Note that the BC 

http://bioconductor.org/packages/release/bioc/html/QUBIC.html


identification procedure of QUBIC include: (1) first identify an all 1s CORE matrix, and (2) 

expand the CORE matrix by adding rows and columns so that the total number of 0s of each 

row and column is smaller than max(1, |𝑛1𝑐|)  and max(1, |𝑚1𝑐1|) , respectively, where 

𝑚1 and 𝑛1 denote the number of rows and columns of the expanded bi-cluster (BC), and 𝑐1 is 

a predefined consistency parameter (-c in QUBIC program). Define 𝑃𝐶𝑂𝑅𝐸  as the probability 

which can be computed by the formula (*), with this BC expanding rule, the probability of 

observing an expanded BC is with an upper bound 𝑃 ≤

min{𝑃𝐶𝑂𝑅𝐸 , 𝑃𝑒𝑥𝑝𝑎𝑛𝑑
1 , 𝑃𝑒𝑥𝑝𝑎𝑛𝑑

2 , … , 𝑃𝑒𝑥𝑝𝑎𝑛𝑑
𝐾 } , where 𝑃𝑒𝑥𝑝𝑎𝑛𝑑

𝑘 , 𝑘 = 1 … K  is the probability of 

each BCs being expanding k times from the CORE matrix, K is the number of added columns or 

rows from the CORE matrix to the final bi-cluster.  

At the ith expansion, BC has 𝑚1
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) , 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ expansion added a column

(
𝑛𝑗

𝑝𝑗
) , 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ expansion added a row

, 

and 𝑝𝑗 is the number of 0s added in the 𝑗𝑡ℎ expansion. 

 

SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1: Proportion of the top 20% and all the BCs that were significantly 

annotated with at least one biological function, CMS class, and clinical features with the 

discretization parameter K=2, 3, 4, and 5. 

Supplementary Figure 2: Distribution of the sample coverage of the CMS I-IV class 

samples by each CMS class associated BC. The boxplots show the proportion of samples in 

each CMS class covered by the CMS class associated BCs of each data set. 

Supplementary Figure 3: Distribution of the sample coverage of the CMS I-IV class 

associated BCs of each CMS class in each data set. The boxplots show the proportion of 

samples in each CMS class associated BCs covered by the samples of each CMS class in each 

data set. 

 

SUPPLEMENTARY TABLES 

Supplementary Table 1:  Clinical features and TCGA COAD mutations analyzed in this 

study. 

Supplementary Table 2:  Description of GitHub files. 

Supplementary Table 3:  A consensus functional annotation of the BCs enriching different 

CMS classes. 

Supplementary Table 4:  Alternative chemo-resistance mechanisms associated BCs. 

Supplementary Table 5:  Validation data of the alternative chemo-resistance mechanisms 

associated BCs. 


